Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Kidney Int Rep ; 2023 May 27.
Article in English | MEDLINE | ID: covidwho-2328337

ABSTRACT

Introduction: Acute kidney injury (AKI) has been identified as one of the most common and significant problems in hospitalized patients with COVID-19. However, studies examining the relationship between COVID-19 and AKI in low- and low-middle income countries (LLMIC) are lacking. Given that AKI is known to carry a higher mortality rate in these countries, it is important to understand differences in this population. Methods: This prospective, observational study examines the AKI incidence and characteristics of 32,210 patients with COVID-19 from 49 countries across all income levels who were admitted to an intensive care unit during their hospital stay. Results: Among patients with COVID-19 admitted to the intensive care unit, AKI incidence was highest in patients in LLMIC, followed by patients in upper-middle income countries (UMIC) and high-income countries (HIC) (53%, 38%, and 30%, respectively), whereas dialysis rates were lowest among patients with AKI from LLMIC and highest among those from HIC (27% vs. 45%). Patients with AKI in LLMIC had the largest proportion of community-acquired AKI (CA-AKI) and highest rate of in-hospital death (79% vs. 54% in HIC and 66% in UMIC). The association between AKI, being from LLMIC and in-hospital death persisted even after adjusting for disease severity. Conclusions: AKI is a particularly devastating complication of COVID-19 among patients from poorer nations where the gaps in accessibility and quality of healthcare delivery have a major impact on patient outcomes.

2.
J Crit Care ; 77: 154318, 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2318568

ABSTRACT

PURPOSE: To determine its cumulative incidence, identify the risk factors associated with Major Adverse Cardiovascular Events (MACE) development, and its impact clinical outcomes. MATERIALS AND METHODS: This multinational, multicentre, prospective cohort study from the ISARIC database. We used bivariate and multivariate logistic regressions to explore the risk factors related to MACE development and determine its impact on 28-day and 90-day mortality. RESULTS: 49,479 patients were included. Most were male 63.5% (31,441/49,479) and from high-income countries (84.4% [42,774/49,479]); however, >6000 patients were registered in low-and-middle-income countries. MACE cumulative incidence during their hospital stay was 17.8% (8829/49,479). The main risk factors independently associated with the development of MACE were older age, chronic kidney disease or cardiovascular disease, smoking history, and requirement of vasopressors or invasive mechanical ventilation at admission. The overall 28-day and 90-day mortality were higher among patients who developed MACE than those who did not (63.1% [5573/8829] vs. 35.6% [14,487/40,650] p < 0.001; 69.9% [6169/8829] vs. 37.8% [15,372/40,650] p < 0.001, respectively). After adjusting for confounders, MACE remained independently associated with higher 28-day and 90-day mortality (Odds Ratio [95% CI], 1.36 [1.33-1.39];1.47 [1.43-1.50], respectively). CONCLUSIONS: Patients with severe COVID-19 frequently develop MACE, which is independently associated with worse clinical outcomes.

3.
Thorax ; 77(6): 606-615, 2022 06.
Article in English | MEDLINE | ID: covidwho-2316148

ABSTRACT

PURPOSE: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. METHODS: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. RESULTS: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, -0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. CONCLUSION: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making. TRIAL REGISTRATION NUMBER: ISRCTN66726260.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/therapy , Hospital Mortality , Humans , Observational Studies as Topic , Prognosis , SARS-CoV-2 , State Medicine , World Health Organization
4.
Crit Care Explor ; 5(4): e0893, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2296331

ABSTRACT

COVID-19 highlighted the need for use of real-world data (RWD) in critical care as a near real-time resource for clinical, research, and policy efforts. Analysis of RWD is gaining momentum and can generate important evidence for policy makers and regulators. Extracting high quality RWD from electronic health records (EHRs) requires sophisticated infrastructure and dedicated resources. We sought to customize freely available public tools, supporting all phases of data harmonization, from data quality assessments to de-identification procedures, and generation of robust, data science ready RWD from EHRs. These data are made available to clinicians and researchers through CURE ID, a free platform which facilitates access to case reports of challenging clinical cases and repurposed treatments hosted by the National Center for Advancing Translational Sciences/National Institutes of Health in partnership with the Food and Drug Administration. This commentary describes the partnership, rationale, process, use case, impact in critical care, and future directions for this collaborative effort.

5.
Brain ; 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2293415

ABSTRACT

Different neurological manifestations of COVID-19 in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicenter observational study using the International Severe Acute Respiratory and emerging Infection Consortium cohort across 1507 sites worldwide from January/30th/2020 to May/25th/2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models. Overall, 161,239 patients (158,267 adults; 2,972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%), and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%), and central nervous system (CNS) infection (0.2%). Each occurred more frequently in ICU than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU vs. non-ICU (7.1% vs. 2.3%, P < .001). Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease, and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure, and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age. In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age.

6.
Int J Epidemiol ; 52(2): 355-376, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2265655

ABSTRACT

BACKGROUND: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. METHODS: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). RESULTS: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. CONCLUSIONS: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death.


Subject(s)
COVID-19 , Humans , Male , Child , Middle Aged , COVID-19/therapy , SARS-CoV-2 , Intensive Care Units , Proportional Hazards Models , Risk Factors , Hospitalization
7.
Influenza Other Respir Viruses ; 16(6): 1040-1050, 2022 11.
Article in English | MEDLINE | ID: covidwho-2251375

ABSTRACT

Introduction: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. Methods: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. Results: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe and Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years; geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did not meet the case definition, the CFR increased. Conclusions: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , Hospitalization , Europe/epidemiology , Hospitals
8.
Int J Infect Dis ; 128: 102-111, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2241792

ABSTRACT

OBJECTIVES: The study aimed to describe the prevalence of and risk factors for post-COVID-19 condition (PCC). METHODS: This was a prospective, longitudinal observational cohort study. Hospitalized and nonhospitalized adults were randomly selected to undergo telephone assessment at 1, 3, and 6 months. Participants were assessed using a standardized questionnaire for the evaluation of symptoms and health-related quality of life. We used negative binomial regression models to determine factors associated with the presence of ≥1 symptoms at 6 months. RESULTS: A total of 46.7% of hospitalized and 18.5% of nonhospitalized participants experienced ≥1 symptoms at 6 months (P ≤0.001). Among hospitalized people living with HIV, 40.4% had persistent symptoms compared with 47.1% among participants without HIV (P = 0.108). The risk factors for PCC included older age, female sex, non-Black race, presence of a comorbidity, greater number of acute COVID-19 symptoms, hospitalization/COVID-19 severity, and wave period (lower risk of persistent symptoms for the Omicron compared with the Beta wave). There were no associations between self-reported vaccination status with persistent symptoms. CONCLUSION: The study revealed a high prevalence of persistent symptoms among South African participants at 6 months but decreased risk for PCC among participants infected during the Omicron BA.1 wave. These findings have serious implications for countries with resource-constrained health care systems.


Subject(s)
COVID-19 , HIV Infections , Adult , Humans , Female , Cohort Studies , South Africa , Prospective Studies , Follow-Up Studies , Quality of Life
9.
BMJ Paediatr Open ; 6(1)2022 10.
Article in English | MEDLINE | ID: covidwho-2153006

ABSTRACT

BACKGROUND: The impact of the COVID-19 pandemic on paediatric populations varied between high-income countries (HICs) versus low-income to middle-income countries (LMICs). We sought to investigate differences in paediatric clinical outcomes and identify factors contributing to disparity between countries. METHODS: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria. RESULTS: A total of 12 860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% [=(3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)). CONCLUSION: Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities.


Subject(s)
COVID-19 , Tuberculosis , Adolescent , Humans , Child , COVID-19 Testing , Pandemics , COVID-19/epidemiology , COVID-19/therapy , Health Resources
10.
BMJ paediatrics open ; 6(1), 2022.
Article in English | EuropePMC | ID: covidwho-2092727

ABSTRACT

Background The impact of the COVID-19 pandemic on paediatric populations varied between high-income countries (HICs) versus low-income to middle-income countries (LMICs). We sought to investigate differences in paediatric clinical outcomes and identify factors contributing to disparity between countries. Methods The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria. Results A total of 12 860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% [=(3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)). Conclusion Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities.

11.
Elife ; 112022 10 05.
Article in English | MEDLINE | ID: covidwho-2056253

ABSTRACT

Background: Whilst timely clinical characterisation of infections caused by novel SARS-CoV-2 variants is necessary for evidence-based policy response, individual-level data on infecting variants are typically only available for a minority of patients and settings. Methods: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries. Results: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population. Conclusions: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome. Funding: Bronner P. Gonçalves, Peter Horby, Gail Carson, Piero L. Olliaro, Valeria Balan, Barbara Wanjiru Citarella, and research costs were supported by the UK Foreign, Commonwealth and Development Office (FCDO) and Wellcome [215091/Z/18/Z, 222410/Z/21/Z, 225288/Z/22/Z]; and Janice Caoili and Madiha Hashmi were supported by the UK FCDO and Wellcome [222048/Z/20/Z]. Peter Horby, Gail Carson, Piero L. Olliaro, Kalynn Kennon and Joaquin Baruch were supported by the Bill & Melinda Gates Foundation [OPP1209135]; Laura Merson was supported by University of Oxford's COVID-19 Research Response Fund - with thanks to its donors for their philanthropic support. Matthew Hall was supported by a Li Ka Shing Foundation award to Christophe Fraser. Moritz U.G. Kraemer was supported by the Branco Weiss Fellowship, Google.org, the Oxford Martin School, the Rockefeller Foundation, and the European Union Horizon 2020 project MOOD (#874850). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Contributions from Srinivas Murthy, Asgar Rishu, Rob Fowler, James Joshua Douglas, François Martin Carrier were supported by CIHR Coronavirus Rapid Research Funding Opportunity OV2170359 and coordinated out of Sunnybrook Research Institute. Contributions from Evert-Jan Wils and David S.Y. Ong were supported by a grant from foundation Bevordering Onderzoek Franciscus; and Andrea Angheben by the Italian Ministry of Health "Fondi Ricerca corrente-L1P6" to IRCCS Ospedale Sacro Cuore-Don Calabria. The data contributions of J.Kenneth Baillie, Malcolm G. Semple, and Ewen M. Harrison were supported by grants from the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059), and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE) (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. All funders of the ISARIC Clinical Characterisation Group are listed in the appendix.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Humans , SARS-CoV-2/genetics
12.
Crit Care ; 26(1): 276, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2029728

ABSTRACT

BACKGROUND: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). METHODS: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. RESULTS: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]). CONCLUSIONS: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/therapy , Humans , Prospective Studies , Respiratory Insufficiency/therapy , SARS-CoV-2 , Tachypnea
13.
BMC Public Health ; 21(1): 1741, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1439535

ABSTRACT

BACKGROUND: Use of electronic data collection, management and analysis tools to support outbreak response is limited, especially in low income countries. This can hamper timely decision-making during outbreak response. Identifying available tools and assessing their functions in the context of outbreak response would support appropriate selection and use, and likely more timely data-driven decision-making during outbreaks. METHODS: We conducted a systematic review and a stakeholder survey of the Global Outbreak Alert and Response Network and other partners to identify and describe the use of, and technical characteristics of, electronic data tools used for outbreak response in low- and middle-income countries. Databases included were MEDLINE, EMBASE, Global Health, Web of Science and CINAHL with publications related to tools for outbreak response included from January 2010-May 2020. Software tool websites of identified tools were also reviewed. Inclusion and exclusion criteria were applied and counts, and proportions of data obtained from the review or stakeholder survey were calculated. RESULTS: We identified 75 electronic tools including for data collection (33/75), management (13/75) and analysis (49/75) based on data from the review and survey. Twenty-eight tools integrated all three functionalities upon collection of additional information from the tool developer websites. The majority were open source, capable of offline data collection and data visualisation. EpiInfo, KoBoCollect and Open Data Kit had the broadest use, including for health promotion, infection prevention and control, and surveillance data capture. Survey participants highlighted harmonisation of data tools as a key challenge in outbreaks and the need for preparedness through training front-line responders on data tools. In partnership with the Global Health Network, we created an online interactive decision-making tool using data derived from the survey and review. CONCLUSIONS: Many electronic tools are available for data -collection, -management and -analysis in outbreak response, but appropriate tool selection depends on knowledge of tools' functionalities and capabilities. The online decision-making tool created to assist selection of the most appropriate tool(s) for outbreak response helps by matching requirements with functionality. Applying the tool together with harmonisation of data formats, and training of front-line responders outside of epidemic periods can support more timely data-driven decision making in outbreaks.


Subject(s)
Developing Countries , Epidemics , Disease Outbreaks , Electronics , Humans , Surveys and Questionnaires
14.
Lancet Glob Health ; 10(9): e1247-e1256, 2022 09.
Article in English | MEDLINE | ID: covidwho-1977938

ABSTRACT

BACKGROUND: Post COVID-19 condition (PCC), as defined by WHO, refers to a wide range of new, returning, or ongoing health problems in people who have had COVID-19, and it represents a rapidly emerging public health priority. We aimed to establish how this developing condition has affected patients in South Africa and which population groups are at risk. METHODS: In this prospective cohort study, we used the DATCOV national hospital surveillance system to identify participants aged 18 years or older who had been hospitalised with laboratory-confirmed SARS-CoV-2 infection in South Africa. Participants underwent telephone follow-up assessment at 1 month and 3 months after hospital discharge. Participants were assessed using a standardised questionnaire for the evaluation of symptoms, functional status, health-related quality of life, and occupational status. We used negative binomial regression models to determine factors associated with PCC. FINDINGS: Of 241 159 COVID-19 admissions reported to DATCOV between Dec 1, 2020, and Aug 23, 2021, 8309 were randomly selected for enrolment. Of the 3094 patients that we were able to contact, 2410 (77·9%) consented to participate in the study at 1 month after discharge. Of these, 1873 (77·7%) were followed up at 3 months after hospital discharge. Participants had a median age of 52 years (IQR 41-62) and 960 (51·3%) were women. At 3 months of follow-up, 1249 (66·7%) of 1873 participants reported new or persistent COVID-19-related symptoms, compared with 1978 (82·1%) of 2410 at 1 month after hospital discharge. The most common symptoms reported at 3 months were fatigue (50·3%), shortness of breath (23·4%), confusion or lack of concentration (17·5%), headaches (13·8%), and problems seeing or blurred vision (10·1%). On multivariable analysis, the factors associated with persistent symptoms after acute COVID-19 were being female (adjusted incident rate ratio 1·20, 95% CI 1·04-1·38) and admission to an intensive care unit (1·17, 1·01-1·37). INTERPRETATION: Most participants in this cohort of individuals previously hospitalised with COVID-19 reported persistent symptoms 3 months after hospital discharge and a significant impact of PCC on their functional and occupational status. The large burden of PCC symptoms identified in this study emphasises the need for a national health strategy. This should include the development of clinical guidelines and training of health-care workers for identifying, assessing, and caring for patients affected by PCC; establishment of multidisciplinary health services; and provision of information and support to people who have PCC. FUNDING: Bill & Melinda Gates Foundation, UK Foreign, Commonwealth & Development Office, and Wellcome.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Cohort Studies , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Quality of Life , South Africa/epidemiology
15.
Sci Data ; 9(1): 454, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1967615

ABSTRACT

The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.


Subject(s)
COVID-19 , Hospitalization , Humans , Pandemics , Prospective Studies , SARS-CoV-2
16.
Stud Health Technol Inform ; 294: 164-168, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1865418

ABSTRACT

One approach to verifying the quality of research data obtained from EHRs is auditing how complete and correct the data are in comparison with those collected by manual and controlled methods. This study analyzed data quality of an EHR-derived dataset for COVID-19 research, obtained during the pandemic at Hospital Universitario 12 de Octubre. Data were extracted from EHRs and a manually collected research database, and then transformed into the ISARIC-WHO COVID-19 CRF model. Subsequently, a data analysis was performed, comparing both sources through this convergence model. More concepts and records were obtained from EHRs, and PPV (95% CI) was above 85% in most sections. In future studies, a more detailed analysis of data quality will be carried out.


Subject(s)
COVID-19 , Data Accuracy , Databases, Factual , Electronic Health Records , Humans , Pandemics
17.
Crit Care ; 26(1): 141, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1846858

ABSTRACT

BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.


Subject(s)
COVID-19 Drug Treatment , Neuromuscular Blocking Agents , Respiratory Distress Syndrome , Aged , Female , Humans , Intensive Care Units , Male , Middle Aged , Neuromuscular Blocking Agents/therapeutic use , Propensity Score , Respiration, Artificial , Respiratory Distress Syndrome/drug therapy
18.
Sci Rep ; 12(1): 6843, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1815585

ABSTRACT

COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms.


Subject(s)
COVID-19 , Confusion , Cough , Dyspnea , Fatigue , Female , Fever , Humans , Prospective Studies
19.
Wellcome Open Res ; 7: 101, 2022.
Article in English | MEDLINE | ID: covidwho-1789682

ABSTRACT

BACKGROUND: A growing body of evidence shows that sharing health research data with other researchers for secondary analyses can contribute to better health. This is especially important in the context of a public health emergency when stopping a pandemic depends on accelerating science. METHODS: We analysed the information on data sharing collected by the 18 clinical trial registries included in the WHO International Clinical Trials Registry Platform (ICTRP) to understand the reporting of data sharing plans and which studies were and were not planning to share data. Data on sponsor and funder organisations, country of recruitment, registry, and condition of study were standardised to compare the sharing of information and data across these facets. This represents the first ever comprehensive study of the complete data set contained in ICTRP. RESULTS: Across 132,545 studies registered between January 2019 and December 2020, 11.2% of studies stated that individual patient data (IPD) would be shared. Plans to share IPD varied across the 18 contributing registries- information on data sharing was missing in >95% of study records across 7/18 registries. In the 26,851 (20.3%) studies that were funded or sponsored by a commercial entity, intention to share IPD was similar to those that were not (11.5% vs 11.2%). Intention to share IPD was most common in studies recruiting across both high-income and low- or middle-income countries (21.4%) and in those recruiting in Sub-Saharan Africa (50.3%). Studies of COVID-19 had similar levels of data sharing to studies of other non-pandemic diseases in 2020 (13.7% vs 11.7%). CONCLUSIONS: Rates of planned IPD sharing vary between clinical trial registries and economic regions, and are similar whether commercial or non-commercial agencies are involved. Despite many calls to action, plans to share IPD have not increased significantly and remain below 14% for diseases causing public health emergencies.

20.
Wellcome open research ; 7, 2022.
Article in English | EuropePMC | ID: covidwho-1787314

ABSTRACT

BACKGROUND: A growing body of evidence shows that sharing health research data with other researchers for secondary analyses can contribute to better health. This is especially important in the context of a public health emergency when stopping a pandemic depends on accelerating science. METHODS: We analysed the information on data sharing collected by the 18 clinical trial registries included in the WHO International Clinical Trials Registry Platform (ICTRP) to understand the reporting of data sharing plans and which studies were and were not planning to share data. Data on sponsor and funder organisations, country of recruitment, registry, and condition of study were standardised to compare the sharing of information and data across these facets. This represents the first ever comprehensive study of the complete data set contained in ICTRP. RESULTS: Across 132,545 studies registered between January 2019 and December 2020, 11.2% of studies stated that individual patient data (IPD) would be shared. Plans to share IPD varied across the 18 contributing registries– information on data sharing was missing in >95% of study records across 7/18 registries. In the 26,851 (20.3%) studies that were funded or sponsored by a commercial entity, intention to share IPD was similar to those that were not (11.5% vs 11.2%). Intention to share IPD was most common in studies recruiting across both high-income and low- or middle-income countries (21.4%) and in those recruiting in Sub-Saharan Africa (50.3%). Studies of COVID-19 had similar levels of data sharing to studies of other non-pandemic diseases in 2020 (13.7% vs 11.7%). CONCLUSIONS: Rates of planned IPD sharing vary between clinical trial registries and economic regions, and are similar whether commercial or non-commercial agencies are involved. Despite many calls to action, plans to share IPD have not increased significantly and remain below 14% for diseases causing public health emergencies.

SELECTION OF CITATIONS
SEARCH DETAIL